NOTE ## A Comparison of Aromatization Activities of the Medium Pore Zeolites, ZSM-5, ZSM-22, and EU-1 ZSM-5 is known to be an excellent catalyst for the aromatization of lower alkanes and alkenes (C₃-C₅) (1-7). Already a few commercial processes have been announced based on ZSM-5: M-2 forming, Mobil (6); Cyclar, BP/UOP (7); and Aroforming, IFP/SALUTEC (4). The cyclar process for the aromatization of LPG is already being used by BP on a semicommercial scale in Grangemouth. The activity of ZSM-5 in aromatizing alkanes has been attributed mainly to (i) high acidity and (ii) correct pore geometry. In this context it is interesting to compare the performance of other medium-pore high silica zeolites with different pore geometries. We now present a comparative study of the aromatization of nhexane by three medium-pore zeolites viz., H-ZSM-5, H-ZSM-22, and H-EU-1. Though the aromatization of *n*-hexane over ZSM-5 has been already been reported (3, 8, 9) studies on other high silica, medium-pore zeolites such as ZSM-22 and EU-1 are not available in the literature. ZSM-22 and EU-1 were prepared as per published procedures (10, 11) and ZSM-5 was obtained from United Catalysts India, Ltd. The Na-form of the zeolites was converted into the NH₄⁺-form by three exchanges with ammonium nitrate solution (353 K, 6 h each). The NH₄-zeolites were then dried at 373 K (12 h) and calcined in air (773 K; 4 h) to yield the H-forms. The H-zeolites were compacted into discs (20 mm × 2 mm) using a hydraulic press and they were then broken into small pieces (16–20 mesh). The crushed pieces were washed with water and dried at 383 K for 6 h. Generally, 2-g samples of the catalysts diluted to 5 ml with quartz chips of suitable size were used in the studies. The reactions were carried out under atmospheric pressure in a commercial down-flow reactor (Autoclave Engineers, Erie, PA). The reactor tube (SS/316) had an i.d. of 8 mm and a length/diameter ratio of about 10 was obtained when a 5-ml catalyst charge (including quartz chips) was used. The data reported were obtained 1 h after introduction of the feed. Both gas and liquid products were analyzed and mass balances (excluding H_2 and coke) were carried out. The gaseous and liquid products were analyzed in a GC (HP 5890) using a capillary column (HP1, 50 m \times 0.5 mm). All the samples had similar SiO_2/Al_2O_3 ratios of about 40. Their crystallite sizes were similar (3-4 μ m) though their shapes were different; ZSM-5 and Eu-1 were nearly cuboid, while ZSM-22 was more elongated in one direction. The pore structure of ZSM-5 is bidimensional with two types of intersecting pores with cross sections of 0.54×0.56 nm and 0.51×0.55 nm, with the maximum diameter at the intersection being about 0.9 nm. EU-1 has a one-dimensional pore system (0.58 \times 0.41 nm) but has fairly large side pockets (0.68 \times 0.58 \times 0.81 nm) where some bimolecular reactions can easily take place. ZSM-22 has the most "restricted" pore system of the three zeolites in that it has unidimensional pores of 0.55 \times 0.45 nm. The influence of the temperature of the reaction on conversion and product yields over the three zeolites is presented in Fig. 1. The conversion of n-hexane over ZSM-5 is nearly 100% at all temperatures in the range 723-813 K. In the same range of temperatures, there is between 60 to 90% conversion in the case of ZSM-22 and between 43 and 51% in the case of EU-1. The critical diameter of *n*-hexane is 0.47 nm and its length is 1.03 nm (12). The cracking of *n*-hexane over ZSM-5 has been reported by previous workers (13, 14) to be free of diffusion effects even in crystallites of sizes exceeding 5 µm. It is therefore very likely that n-hexane conversion is not diffusion-limited in our case either (where smaller crystallites have been used). As all the zeolites had similar SiO₂/ Al₂O₃ ratios (and, consequently, a similar number of acidic sites), the lower conversions recorded over ZSM-22 and EU-1 suggest that the reaction is probably constrained by diffusion limitations in the case of the above two zeolites. The apparent activation energies (E_a) for the cracking of n-hexane are 19 ± 2 and 22 ± 3 kJ/mole for EU-1 and ZSM-22 in the temperature range 573 to 673 K while the activation energy is 60 ± 4 kJ/mole for ZSM-5 in the temperature range 533 to 593 K. The rates of n-hexane cracking at 573 K (WHSV = $2 h^{-1}$; H_2/n -C₆ (mole) = 1.5; pressure (total), 1 atm) for ZSM-5, ZSM-22, and EU-1 are respectively, 3.6×10^{-6} , 7.4×10^{-7} , and 5.8×10^{-7} moles/g/sec. The small E_a values for EU-1 and ZSM-22 also suggest the possibility of diffusion effects in these 354 NOTE FIG. 1. Influence of temperature on conversion and product yield. WHSV = 2.0 h^{-1} ; H_2/n - C_6 (mole) = 1.5; pressure 1 atm. catalysts. In addition, other factors arising from differences in the location of the T_d -Al⁺³ sites and the inherent differences in activity per Al site could also explain the lower activities of ZSM-22 and EU-1 when compared to ZSM-5. The yield of aromatics is significantly greater over ZSM-5 than over ZSM-22 or EU-1. Apparently, again the pore size restrictions are responsible for the poorer aromatic yields over ZSM-22 and EU-1. The critical diameter of the benzene ring is 0.68 nm (12) which is much larger than the maximum pore diameters of these zeolites. In the case of ZSM-5, the aromatic compounds can easily be formed at channel intersections. EU-1 produces (Fig. 1) slightly more aromatics than ZSM-22 (12.3% vs 10.8%) at 813 K even though n-hexane conver- 100 A CONVERSION 100 B FIG. 2. Influence of *n*-hexane contact time on conversion and product yield. Temperature, 793 K; H_2/n - C_6 (mole) = 1.5 for H–ZSM-22 and 2.0 for H–ZSM-5; pressure, 1 atm; closed symbols, H–ZSM-5; open symbols, H–ZSM-22. sion is lower (49.2% vs 89%). Again, the C_8^+ aromatics yield is also larger (2.52% vs 0.88%) at this temperature (Fig. 1). It appears likely that the large side pockets are responsible for the greater yields of aromatics. The data obtained over ZSM-5 at low contact times at 793 K are presented in Fig. 2A, while the data for both ZSM-5 and ZSM-22 obtained at large contact times are presented in Fig. 2B. ZSM-5 is so active that nearly the same amount of aromatics (about 10.5%) is produced at a contact time nearly 10 times smaller than over ZSM-22 ((W/F) = 0.05 h for ZSM-5 and 0.48 h for ZSM-22); the n-hexane conversions at these contact times are 78% for ZSM-5 and 87% for ZSM-22. At a constant contact time of 0.48 h, the yield of aromatics is nearly three times greater over ZSM-5 than over ZSM-22 (32 and 10.3%). FIG. 3. Influence of duration of run on conversion and aromatic yield. Temperature, 793 K; WHSV = $2.2 h^{-1}$; Gas/n-C₆ (mole) = 1.5; pressure, 1 atm; closed symbols, H₂; open symbols, N₂. NOTE 355 The deactivation characteristics of the three zeolites (at 793 K) are presented in Fig. 3. ZSM-5 deactivates the least even though it produces the greatest amount of aromatics. No significant decrease in conversion is noticed over ZSM-5 for about 50 h on stream (conversion = 100%) in both H₂ and N₂ atmospheres. On the other hand, ZSM-22 and EU-1 deactivate quickly, with both conversion and aromatic yields decreasing rapidly with time (Fig. 3). The deactivation is faster in the presence of N_2 . Apparently, the presence of H_2 helps in the removal of coke precursors from the catalyst surface leading to a longer life. The reason normally given for the low coking tendency of ZSM-5 is that bimolecular reactions involving large molecules leading to coke formation cannot take place inside the narrow pores of ZSM-5 (restricted transition state selectivity) (15). The rapid deactivation of ZSM-22 and EU-1 (also with similar narrow pores) is probably due to (i) the unidimensional nature of their pore systems; (ii) the greater propensity of ZSM-5 to crack down coke precursors; and (iii) the faster desorption of the coke precursors through the more open and relatively larger pore system in ZSM-5. ## **REFERENCES** Mole, T., Anderson, J. R., and Creer, G., Appl. Catal. 17, 141 (1985). - Wang, I., Chen, T. J., Chao, K. J., and Tsai, T. C., J. Catal. 60, 140 (1979). - 3. Ono, Y., Catal. Rev. Sci. Eng. 34, 179 (1992). - 4. Guisnet, M., and Gnep, N. S., Appl. Catal. A: General 89, 1 (1992). - 5. Sirokman, G., Sendoda, Y., and Ono, Y., Zeolites 6, 299 (1986). - Chen, N. Y., and Yan, T. Y., Ind. Eng. Chem. Process. Des. Dev. 25, 151 (1986). - Johnson, J. A., Weiszmann, J. A., Hilder, G. K., and Hall, A. H. P., Paper presented at the 1984 NPRA Annual Meeting, March 25-27, 1984, San Antonio, TX. - 8. Kanai, J., and Kawata, N., J. Catal. 114, 284 (1988). - 9. Kanai, J., and Kawata, N., Appl. Catal. 55, 115 (1989). - Olson, D. H., Calvert, R. B., and Valyocsik, E. W., European Patent Application 0102716, 1984. - 11. Casci, J. L., Lowe, B. M., and Whitam, T. V, European Patent Application 042226, 1981. - Vedrine, J. C., "Solid State Chemistry in Catalysis" (R. K. Grasselli and J. F. Brazdil, Eds.), ACS Symposium Series, Vol. 279, p. 257. Am. Chem. Soc., Washington, DC, 1985. - 13. Voogd, P., and Van Bekkum, H., Appl. Catal. 59, 311 (1990). - Haag, W. O., Lago, R. M., and Weisz, P. B., Faraday Discuss. Chem. Soc. 72, 317 (1982). - 15. Csicsery, S. M., Zeolites 4, 202 (1984), - D. Bhattacharya - S. Sivasanker National Chemical Laboratory Pune 411 008 India Received April 22, 1994; revised December 1, 1994