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NOTE

A Comparison of Aromatization Activities of the Medium Pore
Zeolites, ZSM-5, ZSM-22, and EU-1

ZSM-5 is known to be an excellent catalyst for the
aromatization of lower alkanes and alkenes (C;-Cs) (1-
7). Already a few commercial processes have been an-
nounced based on ZSM-5: M-2 forming, Mobil (6); Cy-
clar, BP/UOP (7); and Aroforming, IFP/SALUTEC (4).
The cyclar process for the aromatization of LPG is al-
ready being used by BP on a semicommercial scale in
Grangemouth. The activity of ZSM-5 in aromatizing al-
kanes has been attributed mainly to (i) high acidity and
(ii) correct pore geometry. In this context it is interesting
to compare the performance of other medium-pore high
silica zeolites with different pore geometries. We now
present a comparative study of the aromatization of n-
hexane by three medium-pore zeolites viz., H-ZSM-5,
H-ZSM-22, and H-EU-1. Though the aromatization of
n-hexane over ZSM-5 has been already been reported (3,
8, 9) studies on other high silica, medium-pore zeolites
such as ZSM-22 and EU-1 are not available in the litera-
ture. ZSM-22 and EU-1 were prepared as per published
procedures (10, 11) and ZSM-5 was obtained from United
Catalysts India, Ltd.

The Na-form of the zeolites was converted into the
NH;-form by three exchanges with ammonium nitrate
solution (353 K, 6 h each). The NH,-zeolites were then
dried at 373 K (12 h) and calcined in air (773 K; 4 h) to
yield the H-forms. The H-zeolites were compacted into
discs (20 mm X 2 mm) using a hydraulic press and they
were then broken into small pieces (16-20 mesh). The
crushed pieces were washed with water and dried at 383
K for 6 h. Generally, 2-g samples of the catalysts diluted
to 5 ml with quartz chips of suitable size were used in the
studies.

The reactions were carried out under atmospheric
pressure in a commercial down-flow reactor (Autoclave
Engineers, Erie, PA). The reactor tube (SS8/316) had an
i.d. of 8 mm and a length/diameter ratio of about 10 was
obtained when a 5-ml catalyst charge (including quartz
chips) was used. The data reported were obtained 1 h
after introduction of the feed. Both gas and liquid prod-
ucts were analyzed and mass balances (excluding H; and
coke) were carried out. The gaseous and liquid products
were analyzed in a GC (HP 5890) using a capillary
column (HP1, 50 m X 0.5 mm).

All the samples had similar Si0,/Al,O; ratios of about
40. Their crystallite sizes were similar (3-4 um) though
their shapes were different; ZSM-5 and Eu-1 were nearly
cuboid, while ZSM-22 was more elongated in one direc-
tion. The pore structure of ZSM-5 is bidimensional with
two types of intersecting pores with cross sections of
0.54 X 0.56 nm and 0.51 x 0.55 nm, with the maximum
diameter at the intersection being about 0.9 nm. EU-1 has
a one-dimensional pore system (0.58 x 0.41 nm) but has
fairly large side pockets (0.68 X 0.58 x 0.81 nm) where
some bimolecular reactions can easily take place. ZSM-
22 has the most “‘restricted’’ pore system of the three
zeolites in that it has unidimensional pores of 0.55 x 0.45
nm.

The influence of the temperature of the reaction on
conversion and product yields over the three zeolites is
presented in Fig. 1. The conversion of n-hexane over
ZSM-5 is nearly 100% at all temperatures in the range
723-813 K. In the same range of temperatures, there is
between 60 to 90% conversion in the case of ZSM-22 and
between 43 and 51% in the case of EU-1. The critical
diameter of n-hexane is 0.47 nm and its length is 1.03 nm
(12). The cracking of n-hexane over ZSM-5 has been re-
ported by previous workers (13, 14) to be free of diffusion
effects even in crystallites of sizes exceeding 5 um. It is
therefore very likely that n-hexane conversion is not dif-
fusion-limited in our case either (where smaller crystal-
lites have been used). As all the zeolites had similar SiO,/
Al,O; ratios (and, consequently, a similar number of
acidic sites), the lower conversions recorded over ZSM-
22 and EU-1 suggest that the reaction is probably con-
strained by diffusion limitations in the case of the above
two zeolites.

The apparent activation energies (E,) for the cracking
of n-hexane are 19 * 2 and 22 = 3 kJ/mole for EU-1 and
ZSM-22 in the temperature range 573 to 673 K while the
activation energy is 60 = 4 kJ/mole for ZSM-5 in the
temperature range 533 to 593 K. The rates of n-hexane
cracking at 573 K (WHSV = 2 h™!; Hy/n-C¢ (mole) = 1.5;
pressure (total), 1 atm) for ZSM-5, ZSM-22, and EU-1
are respectively, 3.6 x 1076, 7.4 x 1077, and 5.8 x 1077
moles/g/sec. The small E, values for EU-1 and ZSM-22
also suggest the possibility of diffusion effects in these
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FIG. 1. Influence of temperature on conversion and product yield. WHSV = 2.0 h' '; H./n-C¢ (mole) = 1.5; pressure 1 atm.

catalysts. In addition, other factors arising from differ-
ences in the location of the T,—Al*? sites and the inherent
differences in activity per Al site could also explain the
lower activities of ZSM-22 and EU-1 when compared to
ZSM-5. The vyield of aromatics is significantly greater
over ZSM-5 than over ZSM-22 or EU-1. Apparently,
again the pore size restrictions are responsible for the
poorer aromatic yields over ZSM-22 and EU-1. The criti-
cal diameter of the benzene ring is 0.68 nm (12) which is
much larger than the maximum pore diameters of these
zeolites. In the case of ZSM-35, the aromatic compounds
can easily be formed at channel intersections. EU-1 pro-
duces (Fig. 1) slightly more aromatics than ZSM-22
(12.3% vs 10.8%) at 813 K even though n-hexane conver-
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FIG. 2. Influence of n-hexane contact time on conversion and prod-

uct yield. Temperature, 793 K; H,/n-Cq, (mol2) = 1.5 for H-ZSM-22 and
2.0 for H-ZSM-5; pressure, | atm; closed symbols, H-ZSM-5; open
symbols, H-ZSM-22.

sion is lower (49.2% vs 89%). Again, the Cg aromatics
yield is also larger (2.52% vs 0.88%) at this temperature
(Fig. 1). It appears likely that the large side pockets are
responsible for the greater yields of aromatics.

The data obtained over ZSM-5 at low contact times at
793 K are presented in Fig. 2A, while the data for both
ZSM-5 and ZSM-22 obtained at large contact times are
presented in Fig. 2B. ZSM-5 is so active that nearly the
same amount of aromatics (about 10.5%) is produced at a
contact time nearly 10 times smaller than over ZSM-22
((W/F) = 0.05 h for ZSM-5 and 0.48 h for ZSM-22); the n-
hexane conversions at these contact times are 78% for
ZSM-5 and 87% for ZSM-22. At a constant contact time
of 0.48 h, the yield of aromatics is nearly three times
greater over ZSM-5 than over ZSM-22 (32 and 10.3%).
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FIG. 3. Influence of duration of run on conversion and aromatic
yield. Temperature, 793 K; WHSV = 2.2 h"!; Gas/n-C, (mole) = 1.5;
pressure, 1 atm; closed symbols, H,; open symbols, N,.
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The deactivation characteristics of the three zeolites
(at 793 K) are presented in Fig. 3. ZSM-5 deactivates the
least even though it produces the greatest amount of aro-
matics. No significant decrease in conversion is noticed
over ZSM-5 for about 50 h on stream (conversion =
100%) in both H; and N, atmospheres. On the other hand,
ZSM-22 and EU-1 deactivate quickly, with both conver-
sion and aromatic yields decreasing rapidly with time
(Fig. 3). The deactivation is faster in the presence of N,.
Apparently, the presence of H; helps in the removal of
coke precursors from the catalyst surface leading to a
longer life. The reason normally given for the low coking
tendency of ZSM-35 is that bimolecular reactions involv-
ing large molecules leading to coke formation cannot take
place inside the narrow pores of ZSM-5 (restricted transi-
tion state selectivity) (15). The rapid deactivation of
ZSM-22 and EU-1 (also with similar narrow pores) is
probably due to (i) the unidimensional nature of their
pore systems; (i) the greater propensity of ZSM-5 to
crack down coke precursors; and (iii) the faster desorp-
tion of the coke precursors through the more open and
relatively larger pore system in ZSM-5.
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